
The Fault-Tolerant Cluster-Sending Problem

Jelle Hellings1 and Mohammad Sadoghi2

1 McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L7, Canada
2 Exploratory Systems Lab, Department of Computer Science, University of California,

Davis, USA

Abstract The emergence of blockchains is fueling the development of
resilient data management systems that can deal with Byzantine failures
due to crashes, bugs, or even malicious behavior. As traditional resilient
systems lack the scalability required for modern data, several recent
systems explored using sharding. Enabling these sharded designs requires
two basic primitives: a primitive to reliably make decisions within a cluster
and a primitive to reliably communicate between clusters. Unfortunately,
such communication has not yet been formally studied.
In this work, we improve on this situation by formalizing the cluster-
sending problem: the problem of sending a message from one resilient
system to another in a fault-tolerant manner. We also establish lower
bounds on the complexity of cluster-sending under both crashes and
Byzantine failures. Finally, we present worst-case optimal cluster-sending
protocols that meet these lower bounds in practical settings. As such, our
work provides a strong foundation for the future development of sharded
resilient data management systems.

Keywords: Byzantine Failures · Sharding · Message Sending · Commu-
nication Lower Bounds · Worst-Case Optimal Communication

1 Introduction

The emergence of blockchain technology is fueling interest in the development of
new data management systems that can manage data between fully-independent
parties (federated data management) and can provide services continuously, even
during Byzantine failures (e.g., network failure, hardware failure, software failure,
or malicious attacks) [5,13,14,18,20,22]. Recently, this has led to the development
of several resilient data management systems based on permissioned blockchain
technology [6,7,8,9].

Unfortunately, systems based on traditional fully-replicated consensus-based
permissioned blockchain technology lack the scalability required for modern
data management. Consequently, several recent systems have proposed to com-
bine sharding with consensus-based designs (e.g., AHL [3], ByShard [10], and
Chainspace [1]). These systems all follow a familiar sharded design: the data is
split up into individual pieces called shards and each shard is managed by different
independent blockchain-driven clusters. To illustrate the benefits of sharding,
consider a system with a sharded design in which data is kept in local Byzantine

r1 r2

r3 r4

Cluster
(All Data)

Requests
(All Data)

e1 e2

e3 e4

Cluster
(European Data)

a1 a2

a3 a4

Cluster
(American Data)

Cluster-Sending

(coordination)

Requests
(European Data)

Requests
(Mixed Data)

Requests
(American Data)

Figure 1. Left, a traditional fully-replicated resilient system in which all four replicas
each hold all data. Right, a sharded design in which each resilient cluster of four replicas
holds only a part of the data.

fault-tolerant clusters, e.g., as sketched in Figure 1 by storing data relevant to
American customers on systems located in the United States, whereas systems
located in Europe contain data relevant to European customers. Compared to the
traditional fully-replicated design of blockchain systems, this sharded design will
improve storage scalability by distributing data storage and improve performance
scalability by enabling concurrent transaction processing, e.g., transactions on
American and European data can be performed independently of each other.

At the core of any sharded data processing system are two crucial primi-
tives [17]. First, individual shards need primitives to independently make decisions,
e.g., to execute transactions that only affect data held within that shard. In the
setting where each shard is a fault-tolerant cluster, such per-shard decision mak-
ing is formalized by the well-known consensus problem, which can be solved by
practical consensus protocols such as Pbft [2]. Second, shards need primitives to
communicate between each other, e.g., to coordinate the execution of transactions
that affect data held by multiple shards. Unfortunately, even though inter-shard
communication is a fundamental basic primitive, it has not yet been studied in
much detail. Indeed, existing sharded blockchain-inspired data processing systems
typically use expensive ad-hoc techniques to enable coordination between shards
(e.g., Chainspace [1] uses expensive all-to-all broadcasts).

In this work, we improve on this situation by formalizing the problem of
inter-shard communication in permissioned fault-tolerant systems: the cluster-
sending problem. In specific, we fully formalize the cluster-sending problem in
Section 2. Then, in Section 3, we prove strict lower bounds on the complexity of
the cluster-sending problem that are linear in terms of the number of messages
(when faulty replicas only crash) and in terms of the number of signatures
(when faulty replicas can be malicious and messages are signed via public-key
cryptography). Next, in Sections 4 and 5, we introduce bijective sending and
partitioned bijective sending, powerful techniques to provide worst-case optimal
cluster-sending between clusters of roughly the same size (bijective sending) and

Protocol System Robustness Messages (size)

BS-cs Omit nC1 ,nC2 > fC1 + fC2 fC1 + fC2 + 1 (optimal) O(‖v‖)
BS-rs Byzantine, RS nC1 ,nC2 > 2fC1 + fC2 2fC1 + fC2 + 1 (optimal) O(‖v‖)
BS-cs Byzantine, CS nC1 ,nC2 > fC1 + fC2 fC1 + fC2 + 1 (optimal) O(‖v‖)
PBS-cs Omit nC1 > 3fC1 , nC2 > 3fC2 O(max(nC1 ,nC2)) (optimal) O(‖v‖)
PBS-rs Byzantine, RS nC1 > 4fC1 , nC2 > 4fC2 O(max(nC1 ,nC2)) (optimal) O(‖v‖)
PBS-cs Byzantine, CS nC1 > 3fC1 , nC2 > 3fC2 O(max(nC1 ,nC2)) (optimal) O(‖v‖)
Chainspace [1] Byzantine, CS nC1 > 3fC1 , nC2 > 3fC2 O(nC1 · nC2) O(‖v‖)

Figure 2. Overview of cluster-sending protocols that sends a value v of size ‖v‖ from
cluster C1 to cluster C2. Cluster Ci, i ∈ {1, 2}, has nCi replicas of which fCi are faulty.
The protocol names (first column) indicate the main principle the protocol relies on
(BS for bijective sending, and PBS for partitioned bijective sending), and the specific
variant the protocol is designed for (variant -cs is designed to use cluster signing,
and variant -rs is designed to use replica signing). The system column describe the
type of Byzantine behavior the protocol must deal with (“Omit” for systems in which
Byzantine replicas can drop messages, and “Byzantine” for systems in which Byzantine
replicas have arbitrary behavior) and the signature scheme present in the system (“RS”
is shorthand for replica signing, and “CS” is shorthand for cluster signing).

of arbitrary sizes (partitioned bijective sending). Finally, in Section 6, we evaluate
the behavior of the proposed cluster-sending protocols via an in-depth evaluation.
In this evaluation, we show that our worst-case optimal cluster-sending protocols
have exceptionally low communication costs in comparison with existing ad-hoc
approaches from the literature. A full overview of all environmental conditions in
which we study the cluster-sending problem and the corresponding worst-case
optimal cluster-sending protocols we propose can be found in Figure 2.

Our cluster-sending problem is closely related to cross-chain coordination in
permissionless blockchains such as Bitcoin [16] and Ethereum [21], e.g., as pro-
vided via atomic swaps [11], atomic commitment [24], and cross-chain deals [12].
Unfortunately, such permissionless solutions are not fit for a permissioned envi-
ronment. Although cluster-sending can be solved using well-known permissioned
techniques such as consensus, interactive consistency, Byzantine broadcasts, and
message broadcasting [2,4], the best-case costs for these primitives are much
higher than the worst-case costs of our cluster-sending protocols, making them
unsuitable for cluster-sending. As such, the cluster-sending problem is an indepen-
dent problem and our initial results on this problem provide novel directions for
the design and implementation of high-performance resilient data management
systems.

2 Formalizing the Cluster-Sending Problem

A cluster C is a set of replicas. We write f(C) ⊆ C to denote the set of faulty
replicas in C and nf(C) = C \ f(C) to denote the set of non-faulty replicas in
C. We write nC = |C|, fC = |f(C)|, and nfC = |nf(C)| to denote the number of
replicas, faulty replicas, and non-faulty replicas in the cluster, respectively. We

Ping round-trip times (ms) Bandwidth (Mbit/s)

O I M B T S O I M B T S

Oregon (O) ≤ 1 38 65 136 118 161 7998 669 371 194 188 136
Iowa (I) ≤ 1 33 98 153 172 10004 752 243 144 120
Montreal (M) ≤ 1 82 186 202 7977 283 111 102
Belgium (B) ≤ 1 252 270 9728 79 66
Taiwan (T) ≤ 1 137 7998 160
Sydney (S) ≤ 1 7977

Figure 3. Real-world communication costs in Google Cloud, using clusters of n1

machines deployed in six different regions, in terms of the ping round-trip times (which
determines latency) and bandwidth (which determines throughput). These measurements
are reproduced from Gupta et al. [8].

extend the notations f(·), nf(·), n(·), f(·), and nf (·) to arbitrary sets of replicas.
We assume that all replicas in each cluster have a predetermined order (e.g., on
identifier or on public address), which allows us to deterministically select any
number of replicas in a unique order from each cluster. In this work, we consider
faulty replicas that can crash, omit messages, or behave Byzantine. A crashing
replica executes steps correctly up till some point, after which it does not execute
anything. An omitting replica executes steps correctly, but can decide to not send
a message when it should or decide to ignore messages it receives. A Byzantine
replica can behave in arbitrary, possibly coordinated and malicious, manners.

A cluster system S is a finite set of clusters such that communication between
replicas in a cluster is local and communication between clusters is non-local. We
assume that there is no practical bound on local communication (e.g., within
a single data center), while global communication is limited, costly, and to be
avoided (e.g., between data centers in different continents). If C1, C2 ∈ S are
distinct clusters, then we assume that C1∩C2 = ∅: no replica is part of two distinct
clusters. Our abstract model of a cluster system—in which we distinguish between
unbounded local communication and costly global communication—is supported
by practice. E.g., the ping round-trip time and bandwidth measurements of
Figure 3 imply that message latencies between clusters are at least 33–270 times
higher than within clusters, while the maximum throughput is 10–151 times
lower, both implying that communication between clusters is up-to-two orders of
magnitude more costly than communication within clusters.

Definition 1. Let S be a system and C1, C2 ∈ S be two clusters with non-faulty
replicas (nf(C1) 6= ∅ and nf(C2) 6= ∅). The cluster-sending problem is the problem
of sending a value v from C1 to C2 such that: (1.) all non-faulty replicas in C2
receive the value v; (2.) all non-faulty replicas in C1 confirm that the value v
was received by all non-faulty replicas in C2; and (3.) non-faulty replicas in C2
can only receive a value v if all non-faulty replicas in C1 agree upon sending v.

In the following, we assume asynchronous reliable communication: all messages
sent by non-faulty replicas eventually arrive at their destination. None of the
protocols we propose rely on message delivery timings for their correctness. We
assume that communication is authenticated : on receipt of a message m from

replica r ∈ C, one can determine that r did send m if r ∈ nf(C) and if r ∈ nf(C),
then one can only determine that m was sent by r if r did send m. Hence, faulty
replicas are only able to impersonate each other. We study the cluster-sending
problem for Byzantine systems in two types of environments:

1. A system provides replica signing if every replica r can sign arbitrary messages
m, resulting in a certificate 〈m〉r. These certificates are non-forgeable and
can be constructed only if r cooperates in constructing them. Based on only
the certificate 〈m〉r, anyone can verify that m was supported by r.

2. A system provides cluster signing if it is equipped with a signature scheme
that can be used to cluster-sign arbitrary messages m, resulting in a certificate
〈m〉C . These certificates are non-forgeable and can be constructed whenever
all non-faulty replicas in nf(C) cooperate in constructing them. Based on only
the certificate 〈m〉C , anyone can verify that m was originally supported by
all non-faulty replicas in C.

In practice, replica signing can be implemented using digital signatures, which
rely on a public-key cryptography infrastructure [15], and cluster signing can be
implemented using threshold signatures, which are available for some public-key
cryptography infrastructures [19]. Let m be a message, C ∈ S a cluster, and r ∈ C
a replica. We write ‖v‖ to denote the size of any arbitrary value v. We assume
that the size of certificates 〈m〉r, obtained via replica signing, and certificates
〈m〉C, obtained via cluster signing, are both linearly upper-bounded by ‖m‖.
More specifically, ‖(m, 〈m〉r)‖ = O(‖m‖) and ‖(m, 〈m〉C)‖ = O(‖m‖).

When necessary, we assume that replicas in each cluster C ∈ S can reach
agreement on a value using an off-the-shelf consensus protocol [2,23]. In general,
these protocols require nC > 2fC (crash failures) or nC > 3fC (Byzantine failures),
which we assume to be the case for all sending clusters. Finally, in this paper
we use the notation i sgn j, with i, j ≥ 0 and sgn the sign function, to denote i if
j > 0 and 0 otherwise.

3 Lower Bounds for Cluster-Sending

In the previous section, we formalized the cluster-sending problem. The cluster-
sending problem can be solved intuitively using message broadcasts (e.g., as
used by Chainspace [1]), a principle technique used in the implementation of
Byzantine primitives such as consensus and interactive consistency to assure that
all non-faulty replicas reach the same conclusions. Unfortunately, broadcast-based
protocols have a high communication cost that is quadratic in the size of the
clusters involved. To determine whether we can do better than broadcasting, we
will study the lower bound on the communication cost for any protocol solving
the cluster-sending problem.

First, we consider systems with only crash failures, in which case we can
lower bound the number of messages exchanged. As systems with omit failures
or Byzantine failures can behave as-if they have only crash failures, these lower
bounds apply to all environments. Any lower bound on the number of messages

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8 r1,9 r1,10 r1,11 r1,12 r1,13 r1,14 r1,15

r2,1 r2,2 r2,3 r2,4 r2,5

Figure 4. A run of a protocol that sends messages from C1 and C2. The protocol P
sends 13 messages, which is one message short of guaranteeing successful cluster-sending.
Hence, to thwart cluster-sending in this particular run we can crash (highlighted using
a red background) fC1 = 7 and fC2 = 2 replicas in C1 and C2, respectively.

exchanged is determined by the maximum number of messages that can get lost
due to crashed replicas that do not send or receive messages. If some replicas
need to send or receive multiple messages, the capabilities of crashed replicas to
lose messages is likewise multiplied, as the following example illustrates.

Example 1. Consider a system S with clusters C1, C2 ∈ S such that nC1 = 15,
fC1 = 7, nC2 = 5, and fC2 = 2. We assume that S only has crash failures and
that the cluster C1 wants to send value v to C2. We will argue that any correct
cluster-sending protocol P needs to send at least 14 messages in the worst case,
as we can always assure that up-to-13 messages will get lost by crashing fC1
replicas in C1 and fC2 replicas in C2.

Consider the messages of a protocol P that wants to send only 13 messages
from C1 to C2, e.g., the run in Figure 4. Notice that 13 > nC2 . Hence, the run of
P can only send 13 messages to replicas in C2 if some replicas in C2 will receive
several messages. Neither P nor the replicas in C1 know which replicas in C2 have
crashed. Hence, in the worst case, the fC2 = 2 replicas in C2 that received the
most messages have crashed. As we are sending 13 messages and nC2 = 5, the two
replicas that received the most messages must have received at least 6 messages
in total. Hence, out of the 13 messages sent, at least 6 can be considered lost. In
the run of Figure 4, this loss would happen if r2,1 and r2,2 crash. Consequently,
at most 13− 6 = 7 messages will arrive at non-faulty replicas. These messages
are sent by at most 7 distinct replicas. As fC1 = 7, all these sending replicas
could have crashed. In the run of Figure 4, this loss would happen if r1,3, r1,4,
r1,5, r1,8, r1,9, r1,10, and r1,13 crash. Hence, we can thwart any run of P that
intends to send 13 messages by crashing fC1 replicas in C1 and fC2 replicas in
C2. Consequently, none of the messages of the run will be sent and received by
non-faulty replicas, assuring that cluster-sending does not happen.

At least fC1 + 1 replicas in C1 need to send messages to non-faulty replicas in
C2 to assure that at least a single such message is sent by a non-faulty replica
in nf(C1) and, hence, is guaranteed to arrive. We combine this with a thorough
analysis along the lines of Example 1 to arrive at the following lower bounds:

Theorem 1. Let S be a system with crash failures, let C1, C2 ∈ S, and let
{i, j} = {1, 2} such that nCi ≥ nCj . Let qi = (fCi + 1) div nfCj , ri = (fCi +

1) mod nfCj , and σi = qinCj + ri + fCj sgn ri. Any protocol that solves the cluster-
sending problem in which C1 sends a value v to C2 needs to exchange at least σi
messages.3

Proof. The proof uses the same reasoning as Example 1: if a protocol sends at
most σi − 1 messages, then we can choose fC1 replicas in C1 and fC2 replicas in
C2 that will crash and thus assure that each of the σi − 1 messages is either sent
by a crashed replica in C1 or received by a crashed replica in C2.

We assume i = 1, j = 2, and nC1 ≥ nC2 . The proof is by contradiction. Hence,
assume that a protocol P can solve the cluster-sending problem using at most
σ1 − 1 messages. Consider a run of P that sends messages M . Without loss of
generality, we can assume that |M | = σ1 − 1. Let R be the top fC2 receivers of
messages in M , let S = C2 \R, let MR ⊂M be the messages received by replicas
in R, and let N = M \MR. We notice that nR = fC2 and nS = nfC2 .

First, we prove that |MR| ≥ q1fC2 + fC2 sgn r1, this by contradiction. Assume
|MR| = q1fC2 +fC2 sgn r1−v, v ≥ 1. Hence, we must have |N | = q1nfC2 +r1+v−1.
Based on the value r1, we distinguish two cases. The first case is r1 = 0. In
this case, |MR| = q1fC2 − v < q1fC2 and |N | = q1nfC2 + v − 1 ≥ q1nfC2 . As
q1fC2 > |MR|, there must be a replica in R that received at most q1− 1 messages.
As |N | ≥ q1nfC2 , there must be a replica in S that received at least q1 messages.
The other case is r1 > 0. In this case, |MR| = q1fC2 + fC2 − v < (q1 + 1)fC2
and |N | = q1nfC2 + r1 + v − 1 > q1nfC2 . As (q1 + 1)fC2 > |MR|, there must
be a replica in R that received at most q1 messages. As |N | > q1nfC2 , there
must be a replica in S that received at least q1 + 1 messages. In both cases,
we identified a replica in S that received more messages than a replica in R,
a contradiction. Hence, we must conclude that |MR| ≥ q1fC2 + fC2 sgn r1 and,
consequently, |N | ≤ q1nfC2 + r1 − 1 ≤ fC1 . As nR = fC2 , all replicas in R could
have crashed, in which case only the messages in N are actually received. As
|N | ≤ fC1 , all messages in N could be sent by replicas that have crashed. Hence,
in the worst case, no message in M is successfully sent by a non-faulty replica in
C1 and received by a non-faulty replica in C2, implying that P fails. ut

The above lower bounds guarantee that at least one message can be delivered.
Next, we look at systems with Byzantine failures and replica signing. In this case,
at least 2fC1 + 1 replicas in C1 need to send a replica certificate to non-faulty
replicas in C2 to assure that at least fC1 +1 such certificates are sent by non-faulty
replicas and, hence, are guaranteed to arrive. Via a similar analysis to the one of
Theorem 1, we arrive at:

Theorem 2. Let S be a system with Byzantine failures and replica signing,
let C1, C2 ∈ S, and let {i, j} = {1, 2} such that nCi ≥ nCj . Let q1 = (2fC1 +

3 Example 1 showed that the impact of faulty replicas is minimal if we minimize the
number of messages each replica exchanges. Let nC1 > nC2 . If the number of messages
sent to nC2 is not a multiple of nC2 , then minimizing the number of messages received
by each replica in nC2 means that some replicas in nC2 will receive one more message
than others: each replica in nC2 will receive at least q1 messages, while the term
r1 + fC2 sgn r1 specifies the number of replicas in nC2 that will receive q1 +1 messages.

1) div nfC2 , r1 = (2fC1 + 1) mod nfC2 , and τ1 = q1nC2 + r1 + fC2 sgn r1; and
let q2 = (fC2 + 1) div (nfC1 − fC1), r2 = (fC2 + 1) mod (nfC1 − fC1), and τ2 =
q2nC1 + r2 + 2fC1 sgn r2. Any protocol that solves the cluster-sending problem in
which C1 sends a value v to C2 needs to exchange at least τi messages.4

Proof. For simplicity, we assume that each certificate is sent to C2 in an individual
message independent of the other certificates. Hence, each certificate has a sender
and a signer (both replicas in C1) and a receiver (a replica in C2).

First, we prove the case for nC1 ≥ nC2 using contradiction. Assume that a
protocol P can solve the cluster-sending problem using at most τ1 − 1 certificates.
Consider a run of P that sends messages C, each message representing a single
certificate, with |C| = τ1 − 1. Following the proof of Theorem 1, one can show
that, in the worst case, at most fC1 messages are sent by non-faulty replicas in C1
and received by non-faulty replicas in C2. Now consider the situation in which the
faulty replicas in C1 mimic the behavior in C by sending certificates for another
value v′ to the same receivers. For the replicas in C2, the two runs behave the
same, as in both cases at most fC1 certificates for a value, possibly signed by
distinct replicas, are received. Hence, either both runs successfully send values,
in which case v′ is received by C2 without agreement, or both runs fail to send
values. In both cases, P fails to solve the cluster-sending problem.

Next, we prove the case for nC2 ≥ nC1 using contradiction. Assume that a
protocol P can solve the cluster-sending problem using at most τ2 − 1 certificates.
Consider a run of P that sends messages C, each message representing a single
certificate, with |C| = τ2 − 1. Let R be the top 2fC1 signers of certificates in C,
let CR ⊂ C be the certificates signed by replicas in R, and let D = C \ CR. Via
a contradiction argument similar to the one used in the proof of Theorem 1, one
can show that |CR| ≥ 2q2fC1 + 2fC1 sgn r and |D| ≤ q2(nfC1 − fC1) + r − 1 = fC2 .
As |D| ≤ fC2 , all replicas receiving these certificates could have crashed. Hence,
the only certificates that are received by C2 are in CR. Partition CR into two
sets of certificates CR,1 and CR,2 such that both sets contain certificates signed
by at most fC1 distinct replicas. As the certificates in CR,1 and CR,2 are signed
by fC1 distinct replicas, one of these sets can contain only certificates signed by
Byzantine replicas. Hence, either CR,1 or CR,2 could certify a non-agreed upon
value v′, while only the other set certifies v. Consequently, the replicas in C2
cannot distinguish between receiving an agreed-upon value v or a non-agreed-
upon-value v′. We conclude that P fails to solve the cluster-sending problem. ut

4 Cluster-Sending via Bijective Sending

In the previous section, we established lower bounds for the cluster-sending
problem. Next, we develop bijective sending, a powerful technique that allows
the design of efficient cluster-sending protocols that match these lower bounds.

4 Tolerating Byzantine failures in an environment with replica signatures leads to an
asymmetry between the sending cluster C1, in which 2fC1 + 1 replicas need to send,
and the receiving cluster C2, in which only fC2 + 1 replicas need to receive. This
asymmetry results in two distinct cases based on the relative cluster sizes.

Protocol for the sending cluster C1:
1: All replicas in nf(C1) agree on v and construct 〈v〉C1 .
2: Choose replicas S1 ⊆ C1 and S2 ⊆ C2 with nS2 = nS1 = fC1 + fC2 + 1.
3: Choose a bijection b : S1 → S2.
4: for r1 ∈ S1 do
5: r1 sends (v, 〈v〉C1) to b(r1).

Protocol for the receiving cluster C2:
6: event r2 ∈ nf(C2) receives (w, 〈w〉C1) from r1 ∈ C1 do
7: Broadcast (w, 〈w〉C1) to all replicas in C2.
8: event r′

2 ∈ nf(C2) receives (w, 〈w〉C1) from r2 ∈ C2 do
9: r′

2 considers w received.

Figure 5. BS-cs, the bijective sending cluster-sending protocol that sends a value v
from C1 to C2. We assume Byzantine failures and a system that provides cluster signing.

First, we present a bijective sending protocol for systems with Byzantine
failures and cluster signing. Let C1 be a cluster in which the non-faulty replicas
have reached agreement on sending a value v to a cluster C2 and have access to a
cluster certificate 〈v〉C1 . Let Ci, i ∈ {1, 2}, be the cluster with the most replicas.
To assure that at least a single non-faulty replica in C1 sends a message to a
non-faulty replica in C2, we use the lower bound of Theorem 1: we choose σi
distinct replicas S1 ⊆ C1 and replicas S2 ⊆ C2 and instruct each replica in S1 ⊆ C1
to send v to a distinct replica in C2. By doing so, we guarantee that at least a
single message is sent and received by non-faulty replicas and, hence, guarantee
successful cluster-sending. To be able to choose S1 and S2 with nS1 = nS2 = σi,
we need σi ≤ min(nC1 ,nC2), in which case we have σi = fC1 + fC2 + 1. The
pseudo-code for this bijective sending protocol for systems that provide cluster
signing (BS-cs), can be found in Figure 5. Next, we illustrate bijective sending:

Example 2. Consider system S = {C1, C2} of Figure 6 with C1 = {r1,1, . . . ,r1,8},
f(C1) = {r1,1,r1,3,r1,4}, C2 = {r2,1, . . . ,r2,7}, and f(C2) = {r2,1,r2,3}. We have
fC1 + fC2 + 1 = 6 and we choose S1 = {r1,2, . . . ,r1,7}, S2 = {r2,1, . . . ,r2,6}, and
b = {r1,i 7→ r2,i−1 | 2 ≤ i ≤ 7}. Replica r1,2 sends a valid message to r2,1. As
r2,1 is faulty, it might ignore this message. Replicas r1,3 and r1,4 are faulty and
might not send a valid message. Additionally, r2,3 is faulty and might ignore any
message it receives. The messages sent from r1,5 to r2,4, from r1,6 to r2,5, and
from r1,7 to r2,6 are all sent by non-faulty replicas to non-faulty replicas. Hence,
these messages all arrive correctly.

Having illustrated the concept of bijective sending, as employed by BS-cs,
we are now ready to prove correctness of BS-cs:

Proposition 1. Let S be a system with Byzantine failures and cluster signing
and let C1, C2 ∈ S. If nC1 > 2fC1 , nC1 > fC1 + fC2 , and nC2 > fC1 + fC2 , then
BS-cs satisfies Definition 1 and sends fC1 + fC2 +1 messages, of size O(‖v‖) each,
between C1 and C2.

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

Figure 6. Bijective sending from C1 to C2. The faulty replicas are highlighted using
a red background. The edges connect replicas r ∈ C1 with b(r) ∈ C2. Each solid edge
indicates a message sent and received by non-faulty replicas. Each dashed edge indicates
a message sent or received by a faulty replica.

Proof. Choose S1 ⊆ C1, S2 ⊆ C2, and b : S1 → S2 in accordance with BS-cs

(Figure 5). We have nS1
= nS2

= fC1 + fC2 + 1. Let T = {b(r) | r ∈ nf(S1)}. By
construction, we have nfS1

= nT ≥ fC2 + 1. Hence, we have nfT ≥ 1. Due to
Line 5, each replica in nf(T) will receive the message (v, 〈v〉C1) from a distinct
replica in nf(S1) and broadcast (v, 〈v〉C1) to all replicas in C2. As nfT ≥ 1, each
replica r′2 ∈ nf(C2) will receive (v, 〈v〉C1) from a replica in C2 and meet the
condition at Line 8, proving receipt and confirmation. Finally, we have agreement,
as 〈v〉C1 is non-forgeable. ut

To provide cluster-sending in environments with only replica signing, we
combine the principle idea of bijective sending with the lower bound on the
number of replica certificates exchanged, as provided by Theorem 2. Let Ci,
i ∈ {1, 2}, be the cluster with the most replicas. To assure that at least fC1 + 1
non-faulty replicas in C1 send replica certificates to non-faulty replicas in C2, we
choose sets of replicas S1 ⊆ C1 and S2 ⊆ C2 with nS1 = nS2 = τi. To be able to
choose S1 and S2 with nS1

= nS2
= τi, we need τi ≤ min(nC1 ,nC2), in which case

we have τi = 2fC1 + fC2 + 1. The pseudo-code for this bijective sending protocol
for systems that provide replica signing (BS-rs), can be found in Figure 7. Next,
we prove the correctness of BS-rs:

Proposition 2. Let S be a system with Byzantine failures and replica signing
and let C1, C2 ∈ S. If nC1 > 2fC1 + fC2 and nC2 > 2fC1 + fC2 , then BS-rs satisfies
Definition 1 and sends 2fC1 + fC2 + 1 messages, of size O(‖v‖) each, between C1
and C2.

Proof. Choose S1 ⊆ C1, S2 ⊆ C2, and b : S1 → S2 in accordance with BS-rs

(Figure 7). We have nS1
= nS2

= 2fC1 + fC2 + 1. Let T = {b(r) | r ∈ nf(S1)}. By
construction, we have nfS1

= nT ≥ fC1 + fC2 + 1. Hence, we have nfT ≥ fC1 + 1.
Due to Line 5, each replica in nf(T) will receive the message (v, 〈v〉r1) from a
distinct replica r1 ∈ nf(S1) and meet the condition at Line 8, proving receipt and
confirmation.

Next, we prove agreement. Consider a value v′ not agreed upon by C1. Hence,
no non-faulty replicas nf(C1) will sign v′. Due to non-forgeability of replica
certificates, the only certificates that can be constructed for v′ are of the form

Protocol for the sending cluster C1:
1: All replicas in nf(C1) agree on v.
2: Choose replicas S1 ⊆ C1 and S2 ⊆ C2 with nS2 = nS1 = 2fC1 + fC2 + 1.
3: Choose bijection b : S1 → S2.
4: for r1 ∈ S1 do
5: r1 sends (v, 〈v〉r1) to b(r1).

Protocol for the receiving cluster C2:
6: event r2 ∈ nf(C2) receives (w, 〈w〉r′1) from r′

1 ∈ C1 do
7: Broadcast (w, 〈w〉r′1) to all replicas in C2.

8: event r′
2 ∈ nf(C2) receives fC1 + 1 messages (w, 〈w〉r′1):

(i) each message is sent by a replica in C2;
(ii) each message carries the same value w; and

(iii) each message has a distinct signature 〈w〉r′1 , r′
1 ∈ C1

do
9: r′

2 considers w received.

Figure 7. BS-rs, the bijective sending cluster-sending protocol that sends a value v
from C1 to C2. We assume Byzantine failures and a system that provides replica signing.

〈v′〉r1
, r1 ∈ f(C1). Consequently, each replica in C2 can only receive and broadcast

up to fC1 distinct messages of the form (v′, 〈v′〉r′
1
), r′1 ∈ C1. We conclude that no

non-faulty replica will meet the conditions for v′ at Line 8. ut

5 Cluster-Sending via Partitioning

Unfortunately, the worst-case optimal bijective sending techniques introduced in
the previous section are limited to similar-sized clusters:

Example 3. Consider a system S with Byzantine failures and cluster certificates.
The cluster C1 ∈ S wants to send value v to C2 ∈ S with nC1 ≥ nC2 . To
do so, BS-cs requires σ1 = fC1 + fC2 ≤ nC2 . Hence, BS-cs requires that fC1 is
upper-bounded by nfC2 ≤ nC2 , which is independent of the size of cluster C1.

Next, we show how to generalize bijective sending to arbitrary-sized clusters.
We do so by partitioning the larger-sized cluster into a set of smaller clusters,
and then letting sufficient of these smaller clusters participate independently in
bijective sending. First, we introduce the relevant partitioning notation.

Definition 2. Let S be a system, let P be a subset of the replicas in S, let
c > 0 be a constant, let q = nP div c, and let r = nP mod c. A c-partition
partition(P) = {P1, . . . , Pq, P

′} of P is a partition of the set of replicas P into
sets P1, . . . , Pq, P

′ such that nPi
= c, 1 ≤ i ≤ q, and nP ′ = r.

Example 4. Consider system S = {C} of Figure 8 with C = {r1, . . . ,r11} and
f(C) = {r1, . . . ,r5}. The set partition(C) = {P1, P2, P

′} with P1 = {r1, . . . ,r4},
P2 = {r5, . . . ,r8}, and P ′ = {r9,r10,r11} is a 4-partition of C. We have f(P1) =

Cluster C:

P1 P2 P ′
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

Figure 8. An example of a 4-partition of a cluster C with 11 replicas, of which the first
five are faulty. The three partitions are grouped in blue boxes, the faulty replicas are
highlighted using a red background.

P1, nf(P1) = ∅, and nP1
= fP1

= 4. Likewise, we have f(P2) = {r5}, nf(P2) =
{r6,r7,r8}, nP2

= 4, and fP2
= 1.

Next, we apply partitioning to BS-cs. Let C1 be a cluster in which the non-
faulty replicas have reached agreement on sending a value v to a cluster C2 and
constructed 〈v〉C1 . First, we consider the case nC1 ≥ nC2 . In this case, we choose a
set P ⊆ C1 of σ1 replicas in C1 to sent v to replicas in C2. To minimize the number
of values v received by faulty replicas in C2, we minimize the number of values v
sent to each replica in C2. Conceptually, we do so by constructing an nC2 -partition
of the σ1 replicas in P and instruct each resultant set in the partition to perform
bijective sending. The pseudo-code for the resultant sender-partitioned bijective
sending protocol for systems that provide cluster signing, named SPBS-(σ1,cs),
can be found in Figure 10. In a similar fashion, we can apply partitioning to BS-rs,
in which case we instruct τ1 replicas in C1 to send v to replicas in C2, which yields
the sender-partitioned bijective sending protocol SPBS-(τ1,rs) for systems that
provide replica signing. Next, we illustrate sender-partitioned bijective sending:

Example 5. We continue from Example 1. Hence, we have C1 = {r1,1, . . . ,r1,15}
and C2 = {r2,1, . . . ,r2,5} with f(C1) = {r1,3,r1,4,r1,5,r1,8,r1,9,r1,10,r1,13} and
f(C2) = {r2,1,r2,2}. We assume that S provides cluster signing and we apply
sender-partitioned bijective sending. We have nC1 > nC2 , q1 = 8 div 3 = 2,
r1 = 8 mod 3 = 2, and σ1 = 2 · 5 + 2 + 2 = 14. We choose the replicas
P = {r1,1, . . . ,r1,14} ⊆ C1 and the nC2-partition partition(P) = {P1, P2, P

′}
with P1 = {r1,1,r1,2,r1,3,r1,4,r1,5}, P2 = {r1,6,r1,7,r1,8,r1,9,r1,10}, and
P ′ = {r1,11,r1,12,r1,13,r1,14}. Hence, SPBS-(σ1,cs) will perform three rounds
of bijective sending. In the first two rounds, SPBS-(σ1,cs) will send to all
replicas in C2. In the last round, SPBS-(σ1,cs) will send to the replicas Q =
{r2,1,r2,2,r2,3,r2,4}. We choose bijections b1 = {r1,1 7→ r2,1, . . . ,r1,5 7→ r2,5},
b2 = {r1,6 7→ r2,1, . . . ,r1,10 7→ r2,5}, and b′ = {r1,11 7→ r2,1, . . . ,r1,14 7→ r2,4}.
In the first two rounds, we have fP1

+ fC2 = fP2
+ fC2 = 3 + 2 = 5 = nC2 . Due to

the particular choice of bijections b1 and b2, these rounds will fail cluster-sending.
In the last round, we have fP ′ + fQ = 1 + 2 = 3 < nP ′ = nQ. Hence, these two
sets of replicas satisfy the conditions of BS-cs, can successfully apply bijective
sending, and we will have successful cluster-sending (as the non-faulty replica
r1,14 ∈ C1 will send v to the non-faulty replica r2,4 ∈ C2). We have illustrated
the described working of SPBS-(σ1,cs) in Figure 9.

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8 r1,9 r1,10 r1,11 r1,12 r1,13 r1,14 r1,15

r2,1 r2,2 r2,3 r2,4 r2,5 r2,1 r2,2 r2,3 r2,4 r2,5 r2,1 r2,2 r2,3 r2,4

b1 b1 b1 b1 b1 b2 b2 b2 b2 b2 b′ b′ b′ b′

P1 P2 P ′

Figure 9. An example of SPBS-(σ1,cs) with σ1 = 14 and partition(P) = {P1, P2, P
′}.

Notice that only the instance of bijective sending with the replicas in P ′ and bijection
b′ will succeed in cluster-sending.

Protocol for the sending cluster C1:
1: The agreement step of BS-ζ for value v.
2: Choose replicas P ⊆ C1 with nP = α and choose nC2 -partition partition(P) of P.
3: for P ∈ partition(P) do
4: Choose replicas Q ⊆ C2 with nQ = nP and choose bijection b : P → Q.
5: for r1 ∈ P do
6: Send v from r1 to b(r1) via the send step of BS-ζ.

Protocol for the receiving cluster C2:
7: See the protocol for the receiving cluster in BS-ζ.

Figure 10. SPBS-(α,ζ), ζ ∈ {cs, rs}, the sender-partitioned bijective sending cluster-
sending protocol that sends a value v from C1 to C2. We assume the same system
properties as BS-ζ.

Next, we prove the correctness of sender-partitioned bijective sending:

Proposition 3. Let S be a system with Byzantine failures, let C1, C2 ∈ S, let
σ1 be as defined in Theorem 1, and let τ1 be as defined in Theorem 2.

1. If S provides cluster signing and σ1 ≤ nC1 , then SPBS-(σ1,cs) satisfies
Definition 1 and sends σ1 messages, of size O(‖v‖) each, between C1 and C2.

2. If S provides replica signing and τ1 ≤ nC1 , then SPBS-(τ1,rs) satisfies
Definition 1 and sends τ1 messages, of size O(‖v‖) each, between C1 and C2.

Proof. Let β = (fC1 + 1) in the case of cluster signing and let β = (2fC1 + 1)
in the case of replica signing. Let q = β div nfC2 and r = βmod nfC2 . We have
α = qnC2 + r + fC2 sgn r. Choose P and choose partition(P) = {P1, . . . , Pq, P

′}
in accordance with SPBS-(α,ζ) (Figure 10). For each P ∈ P, choose a Q and
b in accordance with SPBS-(α,ζ), and let z(P) = {r ∈ P | b(r) ∈ f(Q)}. As
each such b has a distinct domain, the union of them is a surjection f : P → C2.
By construction, we have nP ′ = r + fC2 sgn r, nz(P ′) ≤ fC2 sgn r, and, for every i,

1 ≤ i ≤ q, nPi
= nC2 and nz(Pi) = fC2 . Let V = P \

(⋃
P∈partition(P) z(P)

)
. We

Protocol for the sending cluster C1:
1: The agreement step of BS-ζ for value v.
2: Choose replicas P ⊆ C2 with nP = α and choose nC1 -partition partition(P) of P.
3: for P ∈ partition(P) do
4: Choose replicas Q ⊆ C1 with nQ = nP and choose bijection b : Q→ P .
5: for r1 ∈ Q do
6: Send v from r1 to b(r1) via the send step of BS-ζ.

Protocol for the receiving cluster C2:
7: See the protocol for the receiving cluster in BS-ζ.

Figure 11. RPBS-(α,ζ), ζ ∈ {cs, rs}, the receiver-partitioned bijective sending cluster-
sending protocol that sends a value v from C1 to C2. We assume the same system
properties as BS-ζ.

have

nV ≥ nP − (qfC2 + fC2 sgn r) = (qnC2 + r + fC2 sgn r)− (qfC2 + fC2 sgn r) =

qnfC2 + r = β.

Let T = {f(r) | r ∈ nf(V)}. By construction, we have nfT = nT . To complete the
proof, we consider cluster signing and replica signing separately. First, the case
for cluster signing. As nV ≥ β = fC1 + 1, we have nfV ≥ 1. By construction, the
replicas in nf(T) will receive the messages (v, 〈v〉C1) from the replicas r1 ∈ nf(V).
Hence, analogous to the proof of Proposition 1, we can prove receipt, confirmation,
and agreement. Finally, the case for replica signing. As nV ≥ β = 2fC1 + 1, we
have nfV ≥ fC1 + 1. By construction, the replicas in nf(T) will receive the
messages (v, 〈v〉r1

) from each replica r1 ∈ nf(V). Hence, analogous to the proof
of Proposition 2, we can prove receipt, confirmation, and agreement. ut

Finally, we consider the case nC1 ≤ nC2 . In this case, we apply partitioning
to BS-cs by choosing a set P of σ2 replicas in C2, constructing an nC1 -partition
of P , and instruct C1 to perform bijective sending with each set in the partition.
The pseudo-code for the resultant receiver-partitioned bijective sending protocol
for systems that provide cluster signing, named RPBS-(σ2,cs), can be found in
Figure 11. In a similar fashion, we can apply partitioning to BS-rs, which yields
the receiver-partitioned bijective sending protocol RPBS-(τ2,rs) for systems that
provide replica signing. Next, we prove the correctness of these instances of
receiver-partitioned bijective sending:

Proposition 4. Let S be a system with Byzantine failures, let C1, C2 ∈ S, let
σ2 be as defined in Theorem 1, and let τ2 be as defined in Theorem 2.

1. If S provides cluster signing and σ2 ≤ nC2 , then RPBS-(σ2,cs) satisfies
Definition 1 and sends σ2 messages, of size O(‖v‖) each, between C1 and C2.

2. If S provides replica signing and τ2 ≤ nC2 , then RPBS-(τ2,rs) satisfies
Definition 1 and sends τ2 messages, of size O(‖v‖) each, between C1 and C2.

Proof. Let β = nfC1 and γ = 1 in the case of cluster signing and let β =
(nfC1 − fC1) and γ = 2 in the case of replica signing. Let q = (fC2 + 1) div β and
r = (fC2 + 1) modβ. We have α = qnC1 + r + γfC1 sgn r. Choose P and choose
partition(P) = {P1, . . . , Pq, P

′} in accordance with RPBS-(α,ζ) (Figure 11).
For each P ∈ P, choose a Q and b in accordance with RPBS-(α,ζ), and let
z(P) = {r ∈ P | b−1(r) ∈ f(Q)}. As each such b−1 has a distinct domain,
the union of them is a surjection f−1 : P → C1. By construction, we have
nP ′ = r + γfC1 sgn r, nz(P ′) ≤ fC1 sgn r, and, for every i, 1 ≤ i ≤ q, nPi

= nC1
and nz(Pi) = fC1 . Let T = P \

(⋃
P∈partition(P) z(P)

)
. We have

nT ≥ nP − (qfC1 + fC1 sgn r) = (qnC1 + r + γfC1 sgn r)− (qfC1 + fC1 sgn r)

= qnfC1 + r + (γ − 1)fC1 sgn r.

To complete the proof, we consider cluster signing and replica signing separately.
First, the case for cluster signing. We have β = nfC1 and γ = 1. Hence,

nT ≥ qnfC1 +r+(γ−1)fC1 sgn r = qβ+r = fC2 +1. We have nfT ≥ nT − fC2 ≥ 1.
Let V = {f−1(r) | r ∈ nf(T)}. By construction, we have nfV = nV and we have
nfV ≥ 1. Consequently, the replicas in nf(T) will receive the messages (v, 〈v〉C1)
from the replicas r1 ∈ nf(V). Analogous to the proof of Proposition 1, we can
prove receipt, confirmation, and agreement.

Finally, the case for replica signing. We have β = nfC1 − fC1 and γ = 2. Hence,
nT ≥ qnfC1 + r + (γ − 1)fC1 sgn r = q(β + fC1) + r + fC1 sgn r = (qβ + r) + qfC1 +
fC1 sgn r = (fC2 + 1) + qfC1 + fC1 sgn r. We have nfT ≥ qfC1 + fC1 sgn r + 1 =
(q + sgn r)fC1 + 1. As there are (q + sgn r) non-empty sets in partition(P), there
must be a set P ∈ P with nP∩nfT ≥ fC1 + 1. Let b be the bijection chosen earlier
for P and let V = {b−1(r) | r ∈ (P ∩nfT)}. By construction, we have nfV = nV

and we have nfV ≥ fC1 + 1. Consequently, the replicas in nf(T) will receive the
messages (v, 〈v〉r1

) from each replica r1 ∈ nf(V). Hence, analogous to the proof
of Proposition 2, we can prove receipt, confirmation, and agreement. ut

The bijective sending cluster-sending protocols, the sender-partitioned bi-
jective cluster-sending protocols, and the receiver-partitioned bijective cluster-
sending protocols each deal with differently-sized clusters. By choosing the
applicable protocols, we have the following:

Corollary 1. Let S be a system, let C1, C2 ∈ S, let σ1 and σ2 be as defined
in Theorem 1, and let τ1 and τ2 be as defined in Theorem 2. Consider the
cluster-sending problem in which C1 sends a value v to C2.

1. If nC > 3fC, C ∈ S, and S has crash failures, omit failures, or Byzantine
failures and cluster signing, then BS-cs, SPBS-(σ1,cs), and RPBS-(σ2,cs)
are a solution to the cluster-sending problem with optimal message complexity.
These protocols solve the cluster-sending problem using O(max(nC1 ,nC2))
messages, of size O(‖v‖) each.

2. If nC > 4fC, C ∈ S, and S has Byzantine failures and replica signing,
then BS-rs, SPBS-(τ1,rs), and RPBS-(τ2,rs) are a solution to the cluster-
sending problem with optimal replica certificate usage. These protocols solve

the cluster-sending problem using O(max(nC1 ,nC2)) messages, of size O(‖v‖)
each.

6 Performance Evaluation

In the previous sections, we introduced worst-case optimal cluster-sending proto-
cols. To gain further insight in the performance attainable by these protocols, we
implemented these protocols in a simulated sharded resilient system environment
that allows us to control the faulty replicas in each cluster. In the experiments, we
used equal-sized clusters, which corresponds to the setup used by recent sharded
consensus-based system proposals [1,3,10]. Hence, we used only the bijective
cluster-sending protocols BS-cs and BS-rs. As a baseline of comparison, we also
evaluated the broadcast-based cluster-sending protocol of Chainspace [1] that
can perform cluster-sending using nC1 · nC2 messages. We refer to Figure 2 for a
theoretical comparison between our cluster-sending protocols and the protocol
utilized by Chainspace. Furthermore, we have implemented MC-cs and MC-rs,
two multicast-based cluster-sending protocols, one using cluster signing and the
other using replica signing), that work similar to the protocol of Chainspace,
but minimize the number of messages to provide cluster-sending.

In the experiment, we measured the number of messages exchanged as a
function of the number of faulty replicas. In specific, we measured the number
of messages exchanged in 10 000 runs of the cluster-sending protocols under
consideration. In each run we measure the number of messages exchanged when
sending a value v from a cluster C1 to a cluster C2 with nC1 = nC2 = 3fC1 + 1 =
3fC2 + 1, and we aggregate this data over 10 000 runs. Furthermore, we measured
in each run the number of messages exchanged between non-faulty replicas, as
these messages are necessary to guarantee cluster-sending. The results of the
experiment can be found in Figure 12.

As is clear from the results, our worst-case optimal cluster-sending protocols
are able to out-perform existing cluster-sending protocols by a wide margin,
which is a direct consequence of the difference between quadratic message com-
plexity (Chainspace, MC-cs, and MC-rs) and a worst-case optimal linear message
complexity (BS-cs and BS-rs). As can be seen in Figure 12, right, our protocols
do so by massively cutting back on sending messages between faulty replicas,
while still ensuring that in all cases sufficient messages are exchanged between
non-faulty replicas (thereby assuring cluster-sending).

7 Conclusion

In this paper, we identified and formalized the cluster-sending problem, a fun-
damental primitive in the design and implementation of blockchain-inspired
sharded fault-tolerant data processing systems. Not only did we formalize the
cluster-sending problem, we also proved lower bounds on the complexity of this
problem. Furthermore, we developed bijective sending and partitioned bijective
sending, two powerful techniques that can be used in the construction of practical

1 5 9 13 17 21 25 29 33
0.0

0.2

0.4

0.6

0.8

1.0
·108

Number of faulty replicas f

M
es
sa
ge
s
E
x
ch
an

ge
d

Cluster-Sending performance

BS-cs
BS-rs
MC-cs
MC-rs
Chainspace [1]

1 5 9 13 17 21 25 29 33
0.0

0.5

1.0

1.5

2.0
·106

Number of faulty replicas f

(Zoomed)

1 5 9 13 17 21 25 29 33
0.0

0.2

0.4

0.6

0.8

1.0
·102

Number of faulty replicas f

(m
in
im

u
m
,
ov
er

al
l
ru
n
s)

Messages exchanged between non-faulty
replicas (Zoomed)

Figure 12. A comparison of the number of message exchange steps as a function of
the number of faulty replicas in both clusters by our worst-case optimal cluster-sending
protocols BS-cs and BS-rs, and by three protocols based on the literature. For each
protocol, we measured the number of message exchange steps to send 10 000 values
between two equally-sized clusters, each cluster having n = 3f + 1 replicas. The dashed
lines in the plot on the right indicate the minimum number of messages that need to be
exchanged between non-faulty replicas for the protocols BS-cs and BS-rs, respectively,
to guarantee cluster-sending (no protocol can do better).

cluster-sending protocols with optimal complexity that matches the lower bounds
established. We believe that our work provides a strong foundation for future
blockchain-inspired sharded fault-tolerant data processing systems that can deal
with Byzantine failures and the challenges of large-scale data processing.

Our fundamental results open a number of key research avenues to further
high-performance fault-tolerant data processing. First, we are interested in further
improving our understanding of cluster-sending, e.g., by establishing lower bounds
on cluster-sending in the absence of public-key cryptography and in the absence of
reliable networks. Second, we are interested in improved cluster-sending protocols
that can perform cluster-sending with less-than a linear number of messages, e.g.,
by using randomization or by optimizing for cases without failures. Finally, we
are interested in putting cluster-sending protocols to practice by incorporating
them in the design of practical sharded fault-tolerant systems, thereby moving
even closer to general-purpose high-performance fault-tolerant data processing.

References

1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A
sharded smart contracts platform (2017), http://arxiv.org/abs/1708.03778

2. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002).
https://doi.org/10.1145/571637.571640

3. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: To-
wards scaling blockchain systems via sharding. In: Proceedings of the 2019
International Conference on Management of Data. pp. 123–140. ACM (2019).
https://doi.org/10.1145/3299869.3319889

4. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983). https://doi.org/10.1137/0212045

5. Gordon, W.J., Catalini, C.: Blockchain technology for healthcare: Facilitating the
transition to patient-driven interoperability. Comput. Struct. Biotechnol. J. 16,
224–230 (2018). https://doi.org/10.1016/j.csbj.2018.06.003

6. Gupta, S., Hellings, J., Sadoghi, M.: Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Management, Morgan & Claypool (2021).
https://doi.org/10.2200/S01068ED1V01Y202012DTM065

7. Gupta, S., Hellings, J., Sadoghi, M.: RCC: Resilient concurrent consensus for
high-throughput secure transaction processing. In: 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE). pp. 1392–1403. IEEE (2021).
https://doi.org/10.1109/ICDE51399.2021.00124

8. Gupta, S., Rahnama, S., Hellings, J., Sadoghi, M.: ResilientDB: Global
scale resilient blockchain fabric. Proc. VLDB Endow. 13(6), 868–883 (2020).
https://doi.org/10.14778/3380750.3380757

9. Gupta, S., Rahnama, S., Hellings, J., Sadoghi, M.: Proof-of-Execution: Reaching
consensus through fault-tolerant speculation. In: Proceedings of the 24th Inter-
national Conference on Extending Database Technology (EDBT). pp. 301–312.
OpenProceedings.org (2021). https://doi.org/10.5441/002/edbt.2021.27

10. Hellings, J., Sadoghi, M.: ByShard: Sharding in a byzantine
environment. Proc. VLDB Endow. 14(11), 2230–2243 (2021).
https://doi.org/10.14778/3476249.3476275

11. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing. pp. 245–254. ACM (2018).
https://doi.org/10.1145/3212734.3212736

12. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and adversarial commerce. Proc.
VLDB Endow. 13(2), 100–113 (2019). https://doi.org/10.14778/3364324.3364326

13. Kamel Boulos, M.N., Wilson, J.T., Clauson, K.A.: Geospatial blockchain: promises,
challenges, and scenarios in health and healthcare. Int. J. Health. Geogr. 17(1),
1211–1220 (2018). https://doi.org/10.1186/s12942-018-0144-x

14. Lao, L., Li, Z., Hou, S., Xiao, B., Guo, S., Yang, Y.: A survey of IoT applications in
blockchain systems: Architecture, consensus, and traffic modeling. ACM Comput.
Surv. 53(1) (2020). https://doi.org/10.1145/3372136

15. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptogra-
phy. CRC Press, Inc., 1st edn. (1996)

16. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
https://bitcoin.org/en/bitcoin-paper

17. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer
(2020). https://doi.org/10.1007/978-3-030-26253-2

18. Rejeb, A., Keogh, J.G., Zailani, S., Treiblmaier, H., Rejeb, K.: Blockchain technology
in the food industry: A review of potentials, challenges and future research directions.
Logistics 4(4) (2020). https://doi.org/10.3390/logistics4040027

19. Shoup, V.: Practical threshold signatures. In: Advances in Cryptology — EURO-
CRYPT 2000. pp. 207–220. Springer (2000)

20. Treiblmaier, H., Beck, R. (eds.): Business Transformation through Blockchain.
Springer (2019). https://doi.org/10.1007/978-3-319-98911-2

21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger,
https://gavwood.com/paper.pdf, EIP-150 revision

22. Wu, M., Wang, K., Cai, X., Guo, S., Guo, M., Rong, C.: A comprehensive survey
of blockchain: From theory to IoT applications and beyond. IEEE Internet Things
J. 6(5), 8114–8154 (2019). https://doi.org/10.1109/JIOT.2019.2922538

23. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing. pp. 347–356. ACM (2019).
https://doi.org/10.1145/3293611.3331591

24. Zakhary, V., Agrawal, D., El Abbadi, A.: Atomic commitment
across blockchains. Proc. VLDB Endow. 13(9), 1319–1331 (2020).
https://doi.org/10.14778/3397230.3397231

